Platinum(II) Complex Containing a Seven Membered Chelate Ring: X-Ray Molecular Structure of Chloro-(dimethylsulphoxide)(1,4-diaminobutane)platinum(II) Chloride

NEVENKA BRESCIANI PAHOR, MARIO CALLIGARIS, LUCIO RANDACCIO*

Istituto Chimico, Università di Trieste, 34100 Trieste, Italy and RAFFAELLO ROMEO

Istituto di Chimica Fisica, Università di Messina, 98100 Messina, Italy

Received November 12, 1977

Complexes of the type [Pt(N-N)(dmso)Cl]Clcontaining chelate rings of increasing size (dmso = dimethylsulphoxide; N-N = chelated 1,2-diaminoethane (en), 1,3-diaminopropane (tn) and 1,4-diaminobutane (bn)) have been synthesized [1] to investigate the chelate effect from a kinetic point of view by measuring the rates of ring opening and closure [2] under the strong *trans* labilising effect of the S-bonded dimethylsulphoxide. Since ring size and flexibility affect markedly the chelation phenomenon we undertook a single-crystal structure analysis of the 1,4diaminobutane complex [Pt(dmso)(bn)Cl]Cl which contains the rare seven-membered chelate ring.

Crystal Data

The crystals are triclinic with unit-cell dimensions a = 6,747(7), b = 13.46(1), c = 7.511(7) Å, $\alpha = 107.7(1)$, $\beta = 89.7(2)$, $\gamma = 104.0(1)^{\circ}$, space group P1 and Z = 2, $D_c = 2.28$. A total of 2008 independent reflexions were measured ($\theta \le 28$) on a Siemens automatic diffractometer. The structure was solved by Patterson and Fourier methods and full matrix least-squares refinement has reached R = 0.080, with anisotropic temperature factors for Pt, Cl and S atoms only (Table I).

The crystals are built up by $[Pt(dmso)(nb)Cl]^+$ cations and Cl⁻ anions. Each Cl⁻ anion is surrounded by four N-H groups of three adjacent cations, with Cl···N distances ranging from 3.25(3) to 3.39(2) Å. The figure shows the structure of the cation in which the unusual 7-membered chelate ring is formed, with Pt coordinated by the two nitrogen atoms of the diamine. The coordination around Pt is completed by Cl and by the S atom of the dmso ligand. The stereochemistry of Pt is the usual square planar with a slightly tetrahedral distortion. One H atom, bonded to C(2), occupies nearly an axial position, 2.85 Å

TABLE. Atomic Coordinates.

Atom	Atomic co-ordinates			E.s.d.'s		
	X/a	Y/b	Z/c	S(X)	S(Y)	S(Z)
Pt	0.2800	0.2347	0.1704	0.0001	0.0001	0.0002
Cl1	0.3819	0.1088	-0.0711	0.0012	0.0007	0.0013
C12	0.5700	0.4204	0.7065	0.0013	0.0007	0.0013
S	0.2621	0.1367	0.3614	0.0011	0.0006	0.0012
0	0.1458	0.1685	0.5274	0.0040	0.0019	0.0038
NĪ	0.2054	0.3568	0.3803	0.0040	0.0022	0.0043
N2	0.2765	0.3219	0.0127	0.0035	0.0016	0.0025
сī	-0.0162	0.3465	0.3958	0.0044	0.0027	0.0049
C2	-0.1397	0.3123	0.2288	0.0067	0.0048	0.0108
C3	-0.0733	0.3681	0.1058	0.0066	0.0043	0.0074
C4	0.0728	0.3296	-0.0821	0.0056	0.0027	0.0057
C5	0.1607-	-0.0066	0.2465	0.0057	0.0026	0.0056
C6	0.5079	0.1346	0.4619	0.0062	0.0028	0.0054
нīсī	-0.0708	0.2894	0.4706			
H2CĪ	-0.0355	0.4245	0.4764			
нīс2	0.1459	0.2284	0.1601			
H2C2	-0.2916	0.3208	0.2633			
H1C3	-0.2107	0.3765	0.0451			
H2C3	-0.0152	0.4462	0.1916			
HĨC4	-0.0055	0.2525	-0.1792			
H2C4	0.1066	0.3892	-0.1545			

Figure. A view of the $[Pt(dmso)(bn)Cl]^-$ cation together with co-ordination bond lengths and angles. E.s.d.'s are 0.01 Å for Pt-S and Pt-Cl and 0.03-0.04 Å for the other bond lengths; 0.3° for angles involving Pt, S and Cl and 2-3° for the others.

far away from Pt. The opposite axial position is occupied by the other H atom (Pt \cdots H, 2.84 Å) bonded to C(2) of the cation in the unit cell immediately above along the X-axis. Thus the cation is quasi 6-co-ordinate in the solid state.

Coordination bond lengths and angles are given in the Figure. The Pt-Cl distance of 2.307(9) Å is close to the values found in the $[PtCl_3(dmso)]^-$ anion [3] (2.297(5)-2.318(5) Å) and the Pt-S bond length

^{*}Author to whom correspondence should be addressed.

of 2.21(1) Å is similar to the values reported in $[PtCl_3(dmso)]^-$ (2.193 Å) and in *cis*- $[PtCl_2(dmso)_2]$ (2,244 and 2.229 Å) [4]. The other bond lengths and angles are of too low accuracy to be discussed.

The chelate 7-membered ring assumes a twistchair conformation very similar to that found in bis-(L-ornithinato)palladium(II) [5], with noticeable internal strain. The torsional angles around the bonds in the chain $N(1)-(CH_2)_4-N(2)$ are 41, 50, 97, 60 and 56° respectively, the central angle being close to that of 102° found in the Pd compound.

References

- 1 R. Romeo, D. Minniti, S. Lanza and M. L. Tobe, *Inorg. Chim. Acta*, 22, 87 (1977).
- 2 R. Romeo, S. Lanza and M. L. Tobe, *Inorg. Chem.*, 16, 785 (1977); R. Romeo, D. Minniti, S. Lanza and M. L. Tobe, submitted for publication to *Inorg. Chem.*
- 3 R. Melanson, J. Hubert and F. D. Rochon, Acta Cryst., B32, 1914 (1976).
- 4 R. Melanson and F. D. Rochon, Canadian J. Chem., 53, 2371 (1975).
- 5 Y. Nakayama, K. Matsumoto, S. Ooi and H. Kuroya, Chem. Comm., 2981 (1973).